GIT WITH CI
DRONE.IO AND GITEA.IO FOR LIGHTWEIGHT

CONTINUOUS INTEGRATION (Cl)

Tmﬁ_________._..?

" _ 1[N --I--II-I‘.\u\&

-—_. “=_===== Hﬁ.\.\s

= A ‘\;‘P

Eé
@Mn

N Wn

= ,.éé—//éﬁ %e%

_,__.,E.I-m_i-ﬁm

.E XTE TS
B A——mﬂ————M/ﬁ—rﬂfffﬂ

_s___._zm.m__is »»". T EUTL = ‘ﬂ—ﬂfff‘
i%_i = I..m.....llhw [R ——

= k—-luEHnEwM

II..I....IIIII"\ —)

I

FERARTINRRRN

i __

m‘\ il

I_mmzﬁ ig
S ml% N

http://drone.io
http://gitea.io

BUILD STUFF WITH GIT AND Ci

CONTINUOUS INTEGRATION (CI) IS THE PROCESS OF AUTOMATING THE BUILD AND TESTING OF CODE EVERY TIME A TEAM MEMBER
COMMITS CHANGES TO VERSION CONTROL 1)

il

w o\ \

BT TR

e nEE iR w

1) https://www.visualstudio.com/learn/what-is-continuous-integration/

Cl TOOLS

Cl

e
LL]
>
T
<
¥
2’
L]
3
<

TRAVIS CI

* free only for Open Source projects

* no self-hosting (?)

CIRCLE CI

limited self-hosting, free version only for 2 Ubuntu versions
limited free plan
only Github and Bitbucket integrations

limited to specific languages (Go (Golang), Haskell, Java, PHP, Python,

Ruby/Rails, Scala)
3

circleci

JENKINS CI

* rather complex to setup / define pipelines / workflows (but
"Jenkins Blue Ocean" makes it a lot easier)

* may need a bunch of plugins to get desired functionality

* based on Java, higher system requirements

GITLAB CI

installs / runs a bunch of bundled software packages (Postgres,
Nginx, Prometheus, Ruby, Sidekig, Docker Registry, Kubernetes
support, ...)

rather high system requirements

DRONE.IO
CONFIGURATION AS CODE. DOCKER NATIVE.

Drone is a lightweight, powerful continuous delivery platform built
for containers.

Drone is packaged and distributed as a Docker image and can be
downloaded from Dockerhub.

http://drone.io

DRONE.IO
INSTALLATION

* http://docs.drone.io/installation/

* http://docs.drone.io/install-for-
gitea/

« default storage engine is an
embedded SQLite database, Mysq|,
Postgres supported

"install" via Docker Compose -
starts the "drone server" and a

"drone agent"”, which is running the
builds

 standalone or with proxy (Nginx,
Apache, Caddy, ...) possible

* SSL, Letsencrypt supported

http://DRONE.io
http://docs.drone.io/installation/
http://docs.drone.io/install-for-gitea/
http://docs.drone.io/install-for-gitea/

DRONE.IO

EXAMPLE WITH DOCKER-COMPOSE USING GITEA

version: '2'

services:
drone-server:
image: drone/drone:0.8

ports:
- 8000:8000
- 9000
volumes:
- /var/lib/drone:/var/lib/drone/
restart: "always"
environment:
DRONE_OPEN=${DRONE_OPEN}
DRONE_HOST=${DRONE_HOST}
DRONE_GITEA=true
DRONE_GITEA_URL=${DRONE_GITEA_URL}
DRONE_SECRET=${DRONE_SECRET}
DRONE_ADMIN=smoises

drone-agent:
image: drone/agent:0.8

restart: "always"
depends_on:
- drone-server
volumes:
- /var/run/docker.sock:/var/run/docker.sock
environment:
— DRONE_SERVER=drone-server: 9000
— DRONE_SECRET=${DRONE_SECRET}

docker-compose.yml

DRONE_HOST=www.myserver.de
DRONE_GITEA_URL=http://www.my-git-server.de:1337/
DRONE_SECRET=abcde222222111

DRONE_OPEN=false

http://drone.io

DRONE INTEGRATIONS

* Gitea / Gogs authentication via username / password (Gitea has no OAuth2
support)

* besides Gitea and Gogs, Github, Gitlab, Bitbucket etc. are also possible
(mostly using OAuth2)

— DRONE_GITHUB=true
— DRONE_GITHUB_CLIENT=${DRONE_GITHUB_CLIENT}
— DRONE_GITHUB_SECRET=${DRONE_GITHUB_SECRET}

SCALING VIA AGENTS

* you can add more agents to increase the number of parallel builds

* you can also adjust the agent’s DRONE_MAX_PROCS=1
environment variable to increase the number of parallel builds for

that agent

PIPELINES

define a list of steps to build, test and deploy your code

pipeline steps are executed serially, in the order in which they are

defined

if a step returns a non-zero exit code, the pipeline immediately
aborts and returns a failure status o assoonsiz

%’ master

the names of the steps are completely arbitrary e

mysq|
build

Drone supports parallel step execution depcy

release

OOOOO

parallel steps are configured using the group attribute

: build

image: golang
commands:
go test

ontend:

: build

image: node
commands:
npm install
npm run test

npm run build

image: plugins/docker
repo: octocat/hello-world

PIPELINE VARIABLES

similar to e.g. Gitlab CI,
you can define variables in

- echo "Build step ... waiting for Mysql ..."

your .drone.yml file which - sleep 15

RANCH: "master"
/drone/artifacts

- export CI_BUILD_REF_NAME=$DRONE_BRANCH

Wi” be available in your - export CI_BUILD_REF=$DRONE_COMMIT_SHA

- export CI_RELEASE_FILE=${DRONE_REPO_NAME}_${DRONE_COMMIT_BRANCH}

dOCker Containers or in - echo $CI_RELEASE_FILE

- git clone ——depth 1 —branch develop http://www.github.com/rah/my_deployment_scripts.git deploy_scripts

Succeeding baSh Scripts - chmod +x ./deploy_scripts/scripts/*.sh

- ./deploy_scripts/scripts/docker-deploy.sh
etc.

tip: you can also clone
additional repos to have a
central place for e.g.
deployment scripts - don't
if [[${PREPARE_DEPLOYMENT} == "y"
COpy / paSte dozens Of echo "Preparing deployment ..."
bash lines to your cd ${WEB_BASEDIR}/
if [[-d $SHOP_BUILD_DIR/build]11; then rm -Rf $SHOP_BUILD_DIR/build; fi

pipelines’ ,commands”
sections

DOCKER VOLUMES

 only available to trusted repositories

for security reasons should only be used in private environments

rah / megacraftlp-shop

Repository Hooks push
pull request

tag
deployment

- /opt/drone/artifacts:/opt/drone/artifacts

Project Settings Protected
Trusted

Project Visibility Public
Private
Internal

SECRETS

Drone provides the ability to store named parameters external to the Yaml configuration

file, in a central secret store

the secrets are exposed to the plugin as uppercase environment variables

drone secret add \
-repository rah/megacraftlp-shop \
-name ssh_private_key \
-value @/opt/drone/id_rsa

: [ssh_private_key 1]
volumes:
- /opt/drone/artifacts:/opt/drone/artifacts

branch: master

mkdir /root/.ssh && echo "$SSH_PRIVATE_KEY" > /root/.ssh/id_rsa && chmod 0600 /root/.ssh/id_rsa

CONDITIONAL BUILDS

Drone supports defining conditional pipelines and steps
matrix builds are supported

other conditions include status of builds, GIT events, environments or platforms as well as only for certain
instances, e.g.

slack-notification:
image: plugins/slack

when:
status: [success, failure]
event: [push, tag, deployment, pull_request]
scp—deploy:
when:
environment: production
event: deployment
matrix-build:
when:
matrix:
GO_VERSION: 1.5
REDIS_VERSION: 2.8

SERVICES

allow you to run any container during the execution of your build
process

all services are in the same subnet with the process build
containers

build:
image: rah/php7-apache

environment:

DB_NAME: "shopware"
DB_HOST: "mysql"
MYSQL_USER: "shopware"
MYSQL_PASSWORD: "shopware"

mysql:
image: percona:5.7
environment:
1YSQL_DATABASE: shopware
1YSQL_USER: shopware
1YSQL_PASSWORD: shopware
1YSQL_ROOT_PASSWORD: root

M
M
M
M

TRIGGER DEPLOYMENTS
("PROMOTE BUILDS")

when you promote a commit or tag it triggers a new pipeline
execution with event type deployment

you can use the event type and target environment to limit step
execution

drone deploy <repo> <build> <environment>

e.g. drone deploy octocat/hello-world 24 staging

Not available via Ul (see https://github.com/drone/drone-ui/pull/
191) or APl yet

but there are PRs / patches

e: golang
commands:

- go build

PROMOTE .

registry.heroku.com

’Cé]: régistry.heroku.com/my—staging—app/web
+ event: deployment

onment: staging

APIS

e Drone offers a REST API with token authentication

* APIs in Node, Go, Python and Ruby, see http://docs.drone.io/api-
overview/

* Node API, commands at https://github.com/drone/drone-node/
blob/master/lib/client.js, example:

const Drone = require('drone-node');

const client = new Drone.Client({ url: 'https://your.drone.server.com', token: 'SoMeToKeN' });

client.getRepos().then((repos) => {

// lists all the repos available to the authenticated user

});

http://docs.drone.io/api-overview/
http://docs.drone.io/api-overview/
https://github.com/drone/drone-node/blob/master/lib/client.js
https://github.com/drone/drone-node/blob/master/lib/client.js

* Plugins are Docker
containers that perform
pre-defined tasks and are
configured as steps in your
pipeline. Plugins can be
used to deploy code,
publish artifacts, send
notification, and more

Example: http://
docs.drone.io/creating-
custom-plugins-bash/

PLUGINS

PLUGINS AS DOCKER IMAGES

Amazon S3 Cache

by drone-plugins

AMAZON AWS S3 CACHE

Artifactory

by athieriot

PUBLISH ARTIFACTORY

Bluemix Cloud Foundry

by jcantosz

PUBLISH DEPLOY BLUEMIX
CLOUD FOUNDRY

Clair

by jmccann

Amazon S3 Sync

by drone-plugins

AMAZON AWS S3 STORAGE

Backblaze B2

by techknowlogick

BACKBLAZE B2 STORAGE

Chef Supermarket

by jmccann

PUBLISH CHEF

Cloud Foundry

by cheslip

SYNC

http://docs.drone.io/creating-custom-plugins-bash/
http://docs.drone.io/creating-custom-plugins-bash/
http://docs.drone.io/creating-custom-plugins-bash/

pipel
backend:
image: golang
commands:
- go get
build
test

plugins/docker
e: kevinbacon

vord: pa55word
repo: foo/bar
tags: latest

otify:
image: plugins/slack
channel: developers
username: drone

DRONE LINKS

https://drone.io/

https://discourse.drone.io/ for support

https://blog.maqpie.com/2017/03/21/build-and-deploy-
applications-using-drone-ci-docker-and-ansible/

https://drailing.net/2018/02/setting-up-continuous-delivery-with-
drone/

https://rancher.com/building-super-fast-docker-cicd-pipeline-
rancher-droneci/

\ & Ubersicht Issues Pull-Requests Erkunden Impressum

? smoises ¥

smoises hat auf master in rah/megacraftlp-shop gepusht
Repository
¥ a459995£23
Kleine Optimierungen, aktuelle SW version

Meine Repositories

vor 2 Monaten

smoises hat auf master in rah/megacraftlp-shop gepusht [Finde eine Repository ...

¥ dc52f6ads5d
’ ’ Alle €@ Quellen Forks

try without chmod, using different ansible user now
vor 3 Monaten & rah/ansible_deployment

& rah/deployment_scripts
smoises hat auf master in rah/ansible_deployment gepusht

& rah/megacraftlp-shop
¥ gaf5132dea

GIT WITH

A ‘ U P C!, Ubersicht Issues Pull-Requests Erkunden Impressum o + v 4
ﬁ rah megacraf‘tlp-shop @ Beobachten beenden Yz Favorisieren 0 ¥ Fork 0
<> Code ® Issues) i Pull-Requests [© Releases [Wiki 4~ Aktivitat ¥ Einstellungen
O F I E MegacraftLP Shopware Shop
D 57 Commits ¥ 1Branch

¥ Branch: master v megacraftlp-shop Neue Datei Datei hochladen HTTP [SSH | git@www.megacraftlp.derrah B X

7 Stefan Moises 2a459995f23 Kleine Optimierungen, aktuelle SW version vor 2 Monaten

Export/data first commit vor 3 Monaten
config shopware update to 5.3.6, set shopware version during install vor 3 Monaten
db first commit vor 3 Monaten

import first commit vor 3 Monaten

GITEA
INSTALLATION

via Docker
from binary

from source

from package

install e.g. using systemd on Ubuntu

sudo vim /etc/systemd/system/gitea.service
sudo systemctl enable gitea
sudo systemctl! start gitea

